MXWT Medium

Adapted from Zhu et al., Appl. Environ. Microbiol. 2008, with the following modifications:

- a) EDTA used at a concentration of 20 mg/L instead of 8.4 mg/L
- b) MgSO₄·7H₂O used at a concentration of 0.45 g/L instead of 0.15 g/L
- c) citric acid used at a concentration of 50 mg/L instead of 1.2 g/L
- d) no leucine, Al, nor Ca.
- e) NH₄Cl and K₂SO₄ used instead of (NH₄)₂SO₄

1) FOR EACH OF TWO SHAKE FLASKS

Medium for 50 mL volume:

Solution MXWT-A (prepare fresh, 40 mL needed)

(autoclaved)

 $\begin{array}{lll} KH_2PO_4 & 1.80 \text{ g/L } (72 \text{ mg/40 mL}) \\ K_2HPO_4 \cdot 3H_2O & 3.175 \text{ g/L } (127 \text{ mg/40 mL}) \\ K_2SO_4 & 2.5 \text{ g/L } (100 \text{ mg/40 mL}) \\ NH_4Cl & 4.38 \text{ g/L } (175 \text{ mg/40 mL}) \\ Na_2(EDTA) \cdot 2H_2O & 25.0 \text{ mg/L } (1 \text{ mg/40 mL}) \end{array}$

Adjust to pH 7.0 with 30% (w/v) NaOH

Solution MXWT-B (solution may be stored on counter, 2.5 mL needed)

(autoclaved)

 $MgSO_4 \cdot 7H_2O$ 9.0 g/L

Solution MXWT-C (solution may be stored in refrigerator, 2.5 mL needed)

(filtered)

thiamine·HCl 0.40 g/L

Solution MXWT-D (solution may be stored on counter, 50 µL needed)

(filtered)

Citric acid	50 g/L
$ZnSO_4 \cdot 7H_2O$	$0.25~\mathrm{g/L}$
$CuCl_2 \cdot 2H_2O$	0.125 g/L
MnSO ₄ ·H ₂ O	1.25 g/L
CoCl ₂ ·6H ₂ O	0.875 g/L
H_3BO_3	$0.06~\mathrm{g/L}$

 $Na_2MoO_4 \cdot 2H_2O$ 0.25 g/L $FeSO_4 \cdot 7H_2O$ 5.5 g/L

Solution MXWT-E (prepare fresh, 5 mL needed)

(autoclaved)

Glucose 50 g/L (0.25 g in 5 mL)

This concentration will result in 5.0 g/L in final solution

2) FOR BIOREACTOR A

Basic Medium for 1.50 liter volume:

Solution MXWT-A (prepare fresh, 1200 mL needed)

(autoclaved)

KH₂PO₄ 1.80 g/L (2.16 g/1200 mL) K₂HPO₄·3H₂O 3.175 g/L (3.81 g/1200 mL) K₂SO₄ 2.5 g/L (3.00 g/1200 mL) NH₄Cl 4.38 g/L (5.25 g/1200 mL) Na₂(EDTA)·2H₂O 25.0 mg/L (30 mg/1200 mL)

Adjust to pH 7.0 with 30% (w/v) NaOH

Solution MXWT-B (solution may be stored on counter, 75 mL needed)

(autoclaved)

 $MgSO_4 \cdot 7H_2O$ 9.0 g/L

Solution MXWT-C (solution may be stored in refrigerator, 75 mL needed)

(filtered)

thiamine·HCl 0.40 g/L

Solution MXWT-D (solution may be stored on counter, 1.5 mL needed)

(filtered)

Citric acid 50 g/L 0.25 g/L $ZnSO_4 \cdot 7H_2O$ CuCl₂·2H₂O 0.125 g/L $1.25 \, g/L$ $MnSO_4 \cdot H_2O$ CoCl₂·6H₂O 0.875 g/L H_3BO_3 0.06~g/L0.25 g/L $Na_2MoO_4 \cdot 2H_2O$ 5.5 g/L $FeSO_4 \cdot 7H_2O$

Solution MXWT-E (prepare fresh, 150 mL needed)

(autoclaved)

Glucose 120 g/L (18 g in 150 mL)

This concentration will result in 12.0 g/L in final solution

3) FOR BIOREACTOR B

Only change is solution MXWT-A which contains

Solution MXWT-A (prepare fresh, 1200 mL needed)

(autoclaved)

 $\begin{array}{lll} KH_2PO_4 & 1.80 \text{ g/L } (2.16 \text{ g/960 mL}) \\ K_2HPO_4 \cdot 3H_2O & 3.175 \text{ g/L } (3.81 \text{ g/960 mL}) \\ K_2SO_4 & 2.5 \text{ g/L } (3.00 \text{ g/960 mL}) \\ NH_4Cl & 1.56 \text{ g/L } (1.88 \text{ g/960 mL}) \\ Na_2(EDTA) \cdot 2H_2O & 25.0 \text{ mg/L } (30 \text{ mg/960 mL}) \end{array}$

Adjust to pH 7.0 with 30% (w/v) NaOH

Volume needed for the final medium (per liter):

MXWT-A	1200 mL
MXWT-B	75 mL
MXWT-C	75 mL
MXWT-D	1.5 mL
MXWT-E	150 mL
Total	1501 mL

Composition of Final Medium

	Bioreactor A	Bioreactor B
Component	Concentration	Concentration
glucose	12.0 g/L	12.0 g/L
NH ₄ Cl	3.50 g/L	1.25 g/L
KH ₂ PO ₄	1.44 g/L	1.44 g/L
K ₂ HPO ₄ ·3H ₂ O	2.51 g/L	2.51 g/L
K ₂ SO ₄	2.00 g/L	2.00 g/L
Na ₂ (EDTA)·2H ₂ O	20.0 mg/L	20.0 mg/L
MgSO ₄ ·7H ₂ O	0.45 g/L	0.45 g/L
ZnSO ₄ ·7H ₂ O	0.25 mg/L	0.25 mg/L
CuCl ₂ ·2H ₂ O	0.125 mg/L	0.125 mg/L
MnSO ₄ ·H ₂ O	1.25 mg/L	1.25 mg/L
CoCl ₂ ·6H ₂ O	0.875 mg/L	0.875 mg/L
H ₃ BO ₃	0.06 mg/L	0.06 mg/L
Na ₂ MoO ₄ ·2H ₂ O	0.25 mg/L	0.25 mg/L
FeSO ₄ ·7H ₂ O	5.50 mg/L	5.50 mg/L
citric acid	50 mg/L	50 mg/L
thiamine·HCl	20 mg/L	20 mg/L